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ABSTRACT 
 

This paper assesses the role of robust acoustic features in spoken 
term detection (a.k.a keyword spotting—KWS) under heavily 
degraded channel and noise corrupted conditions. A number of 
noise-robust acoustic features were used, both in isolation and in 
combination, to train large vocabulary continuous speech 
recognition (LVCSR) systems, with the resulting word lattices 
used for spoken term detection. Results indicate that the use of 
robust acoustic features improved KWS performance with respect 
to a highly optimized state-of-the art baseline system. It has been 
shown that fusion of multiple systems improve KWS performance, 
however the number of systems that can be trained is constrained 
by the number of frontend features. This work shows that given a 
number of frontend features it is possible to train several systems 
by using the frontend features by themselves along with different 
feature fusion techniques, which provides a richer set of individual 
systems. Results from this work show that KWS performance can 
be improved compared to individual feature based systems when 
multiple features are fused with one another and even further when 
multiple such systems are combined. Finally this work shows that 
fusion of fused and single feature bases systems provide significant 
improvement in KWS performance compared to fusion of single-
feature based systems. 

Index Terms— feature combination, noise robust keyword 
spotting, large vocabulary speech recognition, robust acoustic 
features, system combination. 

 
1. INTRODUCTION 

 

KWS entails detecting keywords that are either single-word or 
multi-word terms in the acoustic speech signals. The most common 
KWS approach (also called “spoken term detection”) uses an 
LVCSR system to hypothesize words or subword-units from the 
speech signal and generates a word lattice with indexed words. 
Next, a search performed within the indexed data for the key words 
generates a list of keyword occurrences, each with a corresponding 
time at which it was hypothesized to exist in the speech data. A 
detailed survey of KWS approaches are given in [1, 2] 

The performance of a KWS system is evaluated using different 
measures, which count the number of (1) “hits”— instances where 
a correct hypothesis was made; (2) “misses”— instances where the 
hypothesis failed to detect a keyword; and (3) “false alarms”—
instances where the hypothesis falsely detected a keyword. These 
measures can be used to generate Receiver Operating 
Characteristic (ROC) curves that depict the overall performance of 
the KWS system. 

In work conducted under the U.S. Defense Advanced Research 
Projects Agency’s (DARPA’s) Robust Automatic Speech 
Transcription (RATS) program, we performed KWS experiments 
on conversational speech that was heavily distorted by 

transmission channel and noise, resulting in very low signal-to-
noise ratios (SNRs).  This paper focuses on the Levantine Arabic 
(LAR) KWS task that we conducted.  

State-of-the-art KWS systems proposed so far [3, 4, 5] have 
mostly focused on training multiple KWS systems and then fusing 
their outputs to generate a highly accurate final KWS result. It is 
usually observed that fusion of multiple systems provides better 
KWS performance than their individual counterparts; however the 
realization of the number of individual systems is constrained by 
the number of acoustic frontends. This paper explores: (1) different 
ways to fuse multiple acoustic features for training robust KWS 
systems and compare their performance with respect to the 
individual feature based systems and finally (2) compare KWS 
performance between fusion of individual feature based systems 
and fusion of multi-feature fusion based KWS systems. Although 
score level fusion is conventionally used in the KWS community 
for ensuring robust and high-accuracy KWS systems, to the best of 
our knowledge our work is the first that proposes feature 
combination and demonstrates that such a combination can 
effectively produce high-accuracy candidate KWS systems, that 
results in highly robust KWS systems after system-level fusion. 

 
2. DATASET AND TASK 

 

The speech dataset used in our experiments was collected by the 
Linguistic Data Consortium (LDC) under DARPA’s RATS 
program, which focused on speech in noisy or heavily distorted 
channels in two languages: LAR and Farsi. The data was collected 
by retransmitting telephone speech through eight communication 
channels [6], each of which had a range of associated distortions. 
The DARPA RATS dataset is unique in that noise and channel 
degradations were not artificially introduced by performing 
mathematical operations on the clean speech signal; instead, the 
signals were rebroadcast through a channel and noise degraded 
ambience and then rerecorded. Consequently, the data contained 
several unusual artifacts such as nonlinearity, frequency shifts, 
modulated noise, and intermittent bursts—conditions under which 
traditional noise-robust approaches developed in the context of 
additive noise may not have worked so well. 

For LAR acoustic model (AM) training we used approximately 
250 hrs of retransmitted conversational speech (LDC2011E111 
and LDC2011E93); for language model (LM) training we used 
various sources: 1.3M words from the LDC’s EARS (Effective, 
Affordable, Reusable Speech-to-Text) data collection 
(LDC2006S29, LDC2006T07); 437K words from Levantine Fisher 
(LDC2011E111 and LDC2011E93); 53K words from the RATS 
data collection (LDC2011E111); 342K words from the GALE 
(Global Autonomous Language Exploitation) Levantine broadcast 
shows (LDC2012E79), and 942K words from web data in dialectal 
Arabic (LDC2010E17). We used a held out set for LM tuning 
which is selected from the Fisher data collection containing about 
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46K words. To evaluate KWS performance for LAR, we used two 
test sets—referred to as dev-1 and dev-2 here; each consisted of 10 
hrs of held-out conversational speech. While dev-1 was used to 
tune and optimize the system fusion parameters, dev-2 was used to 
measure the KWS performance. A set of 200 keywords was pre-
specified for the LAR test set, where each keyword is composed of 
up to three words and at least three syllables long and appearing at 
least three times on average in the test set. 
 

3. THE LAR SPEECH RECOGNITION SYSTEM 
 

We used a Gaussian Mixture Model (GMM)-Hidden Markov 
Model (HMM) based speech activity detection (SAD) system to 
segment the speech signals from dev-1 and dev-2. More details 
about the SAD system are provided in [5, 7].  

The AM of the LAR LVCSR system was trained using different 
acoustic features: (1) traditional Perceptual Linear Prediction 
features using RASTA processing (RASTA-PLP) [8], (2) 
Normalized Modulation Cepstral Coefficients (NMCC) [9], and (3) 
Modulation of Medium Duration Speech Amplitude (MMeDuSA) 
features [10, 18]. We also explored a combination of these acoustic 
features, followed by their dimensionality reduction using 
traditional principal component analysis (PCA), heteroscedastic 
linear discriminant analysis (HLDA) and a nonlinear autoencoder 
(AE) network.   

 

3.1 NMCC 
NMCC [9] was obtained from tracking the amplitude modulations 
of subband speech signals in a time domain by using a hamming 
window of 25.6 ms with a frame rate of 10 ms. NMCC features are 
obtained by analyzing speech using a time-domain gammatone 
filterbank with 40 channels equally spaced in the equivalent 
rectangular bandwidth (ERB) scale. Each of the subband signals 
was then processed using the Discrete Energy Separation algorithm 
(DESA) [11], which produces instantaneous estimates of amplitude 
and frequency modulation of the bandlimited subband signals. The 
amplitude modulation signals in the analysis window of 25.6 ms 
were used to compute the amplitude modulation power, which 
were then power compressed using 1/15th root compression. 
Discrete cosine transform (DCT) was performed on the resulting 
powers to generate cepstral features (for additional details, see [9]). 
We used 13 cepstral coefficients and their Δ, Δ2, and Δ3 
coefficients, which yielded a 52-dimensional feature vector. 

 

3.2 MMeDuSA 
The MMeDuSA feature generation pipeline used a time-domain 
gammatone filterbank with 30 channels equally spaced in the ERB 
scale. It used the nonlinear Teager energy operator [12] to estimate 
the amplitude modulation signal from the bandlimited subband 
signals. The MMeDuSA pipeline used a medium duration 
hamming analysis window of 51.2 ms with 10 ms frame rate and 
computed the amplitude modulation power over the analysis 
window. The powers were root compressed and then their DCT 
coefficients were obtained, out of which the first 13 coeffcients 
were retained. These 13 cepstral coefficients along with their Δ, 
Δ2, and Δ3 coefficients resulted in a 52-dimensional feature set. 
Additionally, the amplitude modulation signals from the subband 
channels were bandpass filtered to retain information in the 5 to 
200 Hz range, with that information then summed across the 
frequency channels to produce a summary modulation signal. The 
power signal of the modulation summary was obtained, followed 
by 1/15th root compression. The result was transformed using DCT 
and the first three coefficients were retained and combined with the 

previous 52-dimensional features to produce the 55-dimensional 
MMeDuSA features. 
 

3.3 Feature combination and dimensionality reduction 
This paper explores the role of feature combination in KWS 
performance. Note that combination of multiple features result in 
large dimensional feature sets that are not suitable for GMM-
HMM based AM training. To obtain better control over the 
dimensionality of the features, we explored different ways of 
dimensionality reduction. In the first approach, we performed a 
PCA transform on the resulting features, thereby ensuring that at 
least 90% of the information was retained.  

In the second approach we explored HLDA based 
dimensionality reduction directly on the individual features before 
concatenating them. Each of the features, NMCC, PLP and 
MMeDuSA were HLDA transformed to 20 dimensions and then 
were combined. In this case a combination of two features, such as 
NMCC+PLP and NMCC+MMeDuSA produced a final feature 
vector of 40 dimensions, but a 3-way fusion of 
NMCC+PLP+MMeDuSA results in a final feature dimension of 
60. In the latter case we performed another level of HLDA to 
reduce the 60 dimensional features to 40.  

 
Figure 1. An AE network 

 

Finally, we explored the use of an AE network. An AE network 
consists of two parts (see Figure 1): (1) an extraction part that 
projects the input to an arbitrary space (in this work it was a lower 
dimensional space than the input space, represented by z in Figure 
1) and (2) a generation part that projects back from the 
intermediary arbitrary space to the output space, where the outputs 
are an estimate of the input. In essence, the AE maps the input to 
itself and in the process of doing so its hidden variables 
(representing the arbitrary intermediate space) learn the acoustic 
space as defined by the input acoustic features. Once the AE is 
trained, the generation part of the network can be discarded with 
only the outputs from the extraction part used as features. In one 
sense the network then performs a nonlinear transform (assuming 
the network uses a nonlinear activation function, in our 
experiments we used a tan-sigmoid function) of the input acoustic 
space to generate broad acoustic separation of the data and then in 
the process perform dimensionality reduction if the dimension of z 
was lower than the input acoustic space. Note that this strictly 
acoustic-data-intensive approach does not require phone labels or 
other form of textual representation as do artificial neural network 
(ANN) based tandem features [14]. In our experiments we selected 
the dimension of z to be 39 for two-way feature fusion and 52 for 
three-way feature fusion, where in the latter case the dimension 
was further reduced to 39 through HLDA.  

Table 1 shows the naming convention of the combined features 
with their dimensionality reduction techniques. Note that all the 
candidate features used in our experiments have speaker level 
vocal tract length normalization (VTLN) as we observed that 
VTLN helped to bring the ROC curve down compared to their 
non-VTLN counterparts. 

 



Table 1. Different combination of features and their dimensionality 
reductions used in the experiments 

Input Features Dimensionality Reduction 
 Dim. Type Feature name Dim. 

NMCC(52), 
MMeDuSA(55) 

107 PCA NMCC+MMeDuSA_pca 40 
HLDA NMCC+MMeDuSA_hlda 40 

AE NMCC+MMeDuSA_AE 39 
NMCC(52), 
PLP(52) 

104 PCA NMCC+PLP_pca 40 
HLDA NMCC+PLP_hlda 40 

AE NMCC+PLP_AE 39 
NMCC(52), 
PLP(52), 
MMeDuSA(55) 

159 PCA+ 
HLDA 

NMCC+PLP+MMeDuSA-
pca_hlda 

39 

HLDA NMCC+PLP+ 
MMeDuSA_hlda 

40 

AE+ 
HLDA 

NMCC+PLP+MMeDuSA-
AE_hlda 

39 

 
3.4 Acoustic Modeling (AM) 
For AM training, we used data from all the eight noisy channels 
available in the LAR RATS-KWS training data to train multi-
channel AMs that used three-state left-to-right HMMs to model 
crossword triphones. The training data was clustered into speaker 
clusters using unsupervised agglomerative clustering. Acoustic 
features used for training the HMM were normalized using 
standard cepstral mean and variance normalization. The AMs were 
trained using SRI International’s DECIPHERTM LVCSR system 
[15]. We trained speaker-adaptive maximum likelihood (ML) 
models, where the models were speaker-adapted using ML linear 
regression (MLLR). 
 

3.5 Language Modeling 
The LM was created using SRILM [16], with the vocabulary 
selected as described in the approach in [17]. Using a held-out 
tuning set we selected a vocabulary of 47K words for LAR, which 
resulted in an out of vocabulary (OOV) rate of 4.3% on dev-1. We 
added to this vocabulary the prespecified keyword terms so that no 
OOV keywords occurred during the ASR search. Multi-term 
keywords were added as multi-words (treated as single words 
during recognition). The final LM was an interpolation of 
individual LMs trained on the RATS-KWS LAR corpora. More 
details about the LM used in our experiments are provided in [5]. 
 

4. KWS 
 

We used the ASR lattices generated from our LAR LVCSR system 
as an index to perform the KWS search. ASR word lattices from 
the LAR LVCSR system were used to create a candidate term 
index by listing all words in the lattice along with their start/end 
time and posterior probabilities. A tolerance of 0.5 s was used to 
merge the multiple occurrences of a word at different times. The 
KWS output of each system was obtained by taking the subset of 
words in the index that were keywords. The n-gram keywords 
added to the LM were treated as single words in the lattices and 
therefore appeared in the index. We added links in the word 
lattices where two or three consecutive nodes formed a keyword. 
These links allowed recovery of multiword keywords for which the 
ASR search hypothesized the sequence of words forming the 
keyword instead of the keyword itself. More details about the 
KWS system used in our experiments can be obtained in [5]. 

Fusion of keyword detections from multiple systems is done in 
two steps: first, the detections were aligned across systems using a 

tolerance of one second to create a vector of scores for each fused 
detection. The fused scores were obtained by linearly combining 
the individual scores in the logit domain using logistic regression. 
More details on this approach was presented in [5] 
 

5. RESULTS 
 

We present the KWS performance in terms of two metrics, (1) 
False Alarm (FA) rate at 34% P(miss), and (2) P(miss) at 1% FA. 
These two metrics provide information about the ROC curve from 
the KWS experiment at a region that is critical to the DARPA 
RATS KWS task, whose main goal is to obtain a system with a 
lower FA rate. Table 2 provides these two metrics for the 
individual acoustic features and their fusion, while Figure 2 
presents their ROC curves. 
 

Table 2. KWS performance for the individual feature based 
systems on RATS LAR dev-2 dataset 

 Features FA(%) at 34% P(miss) P(miss)(%) at 1% FA 
PLP 1.06 34.12 

NMCC 0.76 32.86 
MMeDuSA 0.97 33.33 

Fusion 0.39 26.42 
 

 
Figure 2. KWS ROC curves from the individual feature-based 
systems and their 3-way system-fusion 
 

Table 2 and Figure 2 clearly indicate that system fusion 
significantly improves KWS performance by lowering the ROC 
curve appreciably. The FA rate at 34% P(miss) and P(miss) at 34% 
FA was reduced by 48.7% and 20.6% compared to the best 
performing system (NMCC) at that operating point. The ROC 
curve shows that while PLP gave lower P(miss) for FA less than 
0.5, but for higher FA rates NMCC performed better than PLP.  

Table 3 shows the KWS performance of the fused feature 
systems. The AE based dimension-reduced features clearly didn’t 
perform as good as its PCA and HLDA counterparts but 
interestingly they contributed well during system fusion and helped 
to reduce the FA at the operating point. Note that the ROC curve 
for NMCC+PLP+MMeDuSA-AE_hlda based system did not go 
down to 34% P(miss) hence FA at that operating point is not 
reported in the table. The last two rows in table 3 shows the result 
from the fusion of 3-best feature-combined systems and fusion of 
all systems (which included both single- and combined-feature 
systems). Comparing Table 2 and Table 3 we can see that the 3-
way single feature system fusion is worse than the fusion of 3-best 
combined-feature systems indicating that feature-fusion based 
system may be providing richer KWS systems for system 
combination compared to the individual feature based systems.  



Table 3. KWS performance for the fused feature based systems on 
RATS LAR dev-2 dataset 

 Features FA(%) at 34% 
P(miss) 

P(miss)(%) at 
1% FA 

NMCC+MMeDuSA_pca 0.88 32.23 
NMCC+MMeDuSA_hlda 0.97 33.49 
NMCC+MMeDuSA_AE 2.02 38.36 

NMCC+PLP_pca 0.73 32.08 
NMCC+PLP_hlda 0.79 32.08 
NMCC+PLP_AE 2.30 41.67 

NMCC+PLP+MMeDuSA-pca_hlda 0.78 32.08 
NMCC+PLP+MMeDuSA_hlda 0.71 31.29 

NMCC+PLP+MMeDuSA-AE_hlda - 43.55 
Fusion of 3-best systems 

(combined feature systems only) 0.31 25.63 
Fusion of all systems (inclusive of 

single & combined feature systems) 0.26 24.06 
 

 
Figure 3. KWS ROC curves from the baseline system (PLP), 
Fusion of single-feature systems (PLP-NMCC-MMeDuSA), 
Fusion of 3-best combined-feature systems and fusion of all 
systems (both single- and combined-feature based systems). 
 

Figure 3 shows the ROC curves for the baseline PLP-system, 
Fusion of single-feature systems (3-way fusion), fusion of 3-best 
combined-feature systems and finally the fusion of both single- 
and combined-feature based systems. The fusion of 3-best 
combined-feature systems and the 3-way single-feature system 
fusion results are directly comparable as both of them use three 
systems only and the same native features. The lowering of the 
ROC curve from the fusion of 3-best combined-feature system 
indicates that the feature combination approach is able to exploit 
the complementary information amongst the features and resulting 
in better and richer lattices. We observed that feature combination 
typically results in an increased lattice size, where we observed a 
maximum relative lattice size increase of 38% compared to a 
single feature system. The ROC curve from the fusion of all 
systems show that the generation of multiple candidate systems 
through feature fusion provides us with richer systems and more 
options for system level fusion. The best fusion of all systems in 
fact is the fusion of 7 systems which gave the best ROC curve and 
those 7 systems consists of the following features: 
NMCC+PLP+MMeDuSA_hlda, NMCC+PLP_hlda, NMCC, 
NMCC+PLP_pca, NMCC+PLP+MMeDuSA-pca_hlda, 
NMCC+PLP+MMeDuSA-AE_hlda and NMCC+MMeDuSA_AE. 
The fusion of 3-best combined-feature systems consisted of the 
following candidate systems: NMCC+PLP+ MMeDuSA_hlda, 
NMCC+PLP_pca and  NMCC+PLP+MMeDuSA-pca_hlda. 

 
Figure 4. KWS ROC curves from the fusion of all systems and 
fusion of all systems excluding the AE-based systems. 

 

The interesting aspect of this study is that it uses the same 
candidate set of acoustic features (NMCC, PLP and MMeDuSA) 
and assuming that AM and LM remain the same, we observed that 
by different ways of feature combination we can improve the KWS 
performance appreciably. Also we observed that even if the AE 
based feature combination did not result in better individual KWS 
systems, but such systems captured sufficient complimentary 
information and hence contributed in slightly lowering the ROC 
curve as shown in Figure 4, where we show the ROC curve from 
the fusion of all systems and fusion of all systems except the AE 
based systems. Figure 4 also shows that the fusion of AE based 
systems helped the ROC curve to achieve a P(miss) lower than 
15% and this happens because the AE-based systems produces 
more false-alarms compared to others resulting in an extend the 
ROC curve going beyond the 15% FA region. 

 
6. CONCLUSION 

 

In this work we presented different ways to combine multiple 
features for training acoustic models for DARPA-RATS LAR 
KWS task. Our results show that the relative P(miss) can be 
reduced by 2.4% at 1%FA and the relative FA can be reduced by 
6.6% at 34% P(miss) by using feature combination compared to 
single-feature bases systems. Combining systems using single 
features and different feature combinations reduces the relative 
P(miss) at 1% FA by approximately 29.5% compared with the PLP 
baseline system and by 8.9% compared to the fusion of the single-
feature systems. Our results indicate that judicious selection of 
feature fusion, advanced dimensionality reduction techniques, and 
fusion of multiple systems can appreciably improve the accuracy 
of KWS task on heavily channel and noise degraded speech. 
Future studies will explore similar strategies in a deep neural 
network acoustic modeling setup. 
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